Hutch++: Optimal Stochastic Trace Estimation

Raphael A. Meyer' Cameron Musco® Christopher Musco' David P. Woodruff?

"New York University °University of Massachusetts Amherst 3Carnegie Mellon University
Background
Trace Estimation Matrix-Vector Models
Trace Estimation Matrix-Vector Oracle Model

« Goal: Estimate trace of n. x n matrix A Idea: Matrix-Vector Product as a Computational Primitive

tr(A) = Zn: A, = zn: i = Given access to a n x n matrix A only through a
i—1 i—1 Matrix-Vector Multiplication Oracle:

= In Downstream Applications, A is not stored in memory. x LUl ol 2HPU A

= Instead, B isin memory and A = f(B):
Y /(B) = e.g. Krylov Methods, Sketching, Streaming, . ..

No. Triangles | Estrada Index | Log-Determinant
tr(;B?) tr(e?) tr(In(B)) Implicit Matrix Trace Estimation:

Estimate tr(A) with as few Matrix-Vector products

= Computing A = B’ takes O(n?) time .
Ax;, ..., Ax,, as possible:

= Computing Ax = : B(B(Bx)) takes O(n?) time
= If A= f(B), then we can often compute Ax quickly

~

tr(A) — tr(A)| < etr(A)

Main Theorem and Context

Prior Work: Hutchinson's Estimator Core Intuition

If A is hard for the Hutchinson estimator,

Hutchinson's Estimator: .
then the sum of the top k eigenvalues represents

- If x ~ N(0, 1), then most of tr(A).
1[xTAx|] = tr(A) Var[xTAx| = ||A|l5 §:
» Hutchinson’s Estimator: H/(A) :=; x| x] Ax; ;D
i[H(A)] = tr(A) Var[H(A)] = 7l Al = dwm”ﬂ””””z”o””””immﬂ”i””””E””””i””“”%o
(compute directly) (approximate with Hutchinson's)

« For A > 0, we have |A||r < tr(A), so that

1. Find a good rank-k approximation A;
Hi(A) —tr(A)| < O(ﬁ)HAHF (Chebyshev Ineq.) 2. Notice that tr(A) = tr(Ay) + tr(A — Ay)
< O(%) tr(A) (A F < tr(A)) 3. Compute tr(Ay) exactly N
= ctr(A) (t = 0(L) 4. Return Hutch++(A) := tr(Ayp) + H(A — Ay)

Theorem: If k = ¢ = O(2), then |Hutch++(A) — tr(A)| < e tr(A)

= This analysis is only tight if ||A||r ~ tr(A)!
Fundamental Rate: |Hutch++(A) — tr(A)] < O(;)||A — Ayl r

- ||Al|lr = tr(A) only if A’s eigenvalues are nearly sparse!

Conclusions

Our Contributions Extensions Et Cetera

For PSD A, we show @(%) products are necessary and sufficient. Prior work | ower Bounds
used O(3) products.

0 ; 1 .
Hutch++ Algorithm: All algorithms must use)(Z) queries

= Input: Number of matrix-vector queries m, matrix A Indefinite Matrices
1. Sample S € R¥% and G € R%™*5 with iid. {+1, —1} entries
2. Compute QQ = qr(AS)
3. Return tr(Q7AQ) + 2 (G (I — QQMA(I — QQ")G)

= We instead achieve [tr(A) — Hutch++(A)| < || A|l.

Non-Adaptive Algorithms

Experiments . _y
= We submit all queries in parallel. x; cannot depend on Ax;
Fast Eig. Decay Slow Eig. Decay * NA-Hutch++: Non-Adaptive variant of Hutch++, still O(2)
10— 100
i] i Hutchinson'’s || . o
i 13 - — Hutch++ QR Codes & Links for More Details
) A— Tl N @EE ORS#EAO
UM | et : z e b e T Ry T
Y L L A R B O MK o e s R
10! 107 10° 10! 107 10? EPRR %
Number of Matrix-Vector Queries Number of Matrix-Vector Queries * *
(a) [[A][r = 0.63tr(A) (b) |AllF =0.02tr(A) E] REL: E] kg TaliT b

Figure 1. When ||A||r =~ tr(A), A has quickly decaying spectrum, so Hutch++ is faster than H, (a) Hutch++ for Undergrads (b) Hutch++ Full Paper

https://ram900.hosting.nyu.edu/hutchplusplus/
https://arxiv.org/abs/2010.09649

